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Abstract--A thermodynamics approach to the description of the dynamic boundary angle is proposed. 
An energy equation for the moving line of contact of three media is derived taking into account viscous 
flow. The energy equation is used to substantiate the boundary condition of the asymptotic theory for 
the free boundary slope angle at a small distance from the solid. 

Second-order asymptotic relations of the dynamic wetting theory are developed assuming a low 
capillary constant. Boundary conditions for Navier Stokes equations over a moving three-phase contact 
line for a general flow of viscous liquid are derived. A solution procedure for the case of low Reynolds 
numbers is considered. Assuming a stationary movement of the interface in a capillary, a method for 
establishing the second-order terms is proposed. Exact asymptotic solutions are obtained. Symmetry of 
theasymptotic relation for the dynamic boundary angle in the principal approximation is described. 
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1. I N T R O D U C T I O N  

Theoretical  studies on shock waves in cont inua  are known to give much attention to integral 
conservat ion laws for the moving discontinuity surfaces. When a solid body is wetted with a liquid 
the l iquid-gas contact  line is moving at a much lesser speed. The interface surfaces intercept one 
another  on the moving contact  line for the three phases, i.e. on the wetting line. In a small-size 
vicinity o f  the line the conservat ion laws must  also hold. Such an approach  (Voinov 1976) is o f  
interest in connect ion with the problem of  substantiating within the wetting hydrodynamics  the 
boundary  condit ion for a small-size area; numerous  discussions are currently undertaken,  and 
various models [the contr ibut ions by Dussan (1979) and Baiocchi & Pukhnachev (1990)] are 
proposed in order  to eliminate the sigularity in stresses near the contact  line and for the flow within 
the corner;  the singularity has been revealed by Moffat  (1964) and Huh  & Scriven (1971). 

In the contr ibut ions by Hansen & Toong  (1971), Voinov (1976, 1977) and Boender et al. (1991), 
the l iquid-gas boundary  slope angle is taken to be equal to the equilibrium boundary  angle at a 
certain small distance f rom the solid surface. 

Of  course, mechanisms of  dependence o f  the capillarity angle on the wetting velocity can well 
differ f rom hydrodynamic  ones. The angle is known to depend on kinetic processes near the wetting 
line (Blake & Haynes  1969). 

We consider the influence o f  viscous flow on the boundary  angle, and address the thermo- 
dynamics  in the validation o f  the boundary  condit ion a round  the wetting line (see section 2). 

A non-linear flow pattern, in the caseof  a free boundary  in the vicinity o f  a moving contact  line 
on a smooth  solid surface, has been established asymptotically in two approximations,  with respect 
to the capillary constant ,  Ca (Voinov 1976, 1977, 1978), introducing one arbitrary constant .  This 
arbi t rary constant  reflects the influence o f  a microscopic flow on the interface shape if the second 
iteration is dealt with. This is the major  challenge in closing the theory in the next iterations with 
respect to the low constant ,  Ca. It is only in the first iteration that the effects o f  microscopic flow 
are insignificant. In the case o f  a general velocity field, the above arbi t rary constant  is known for 
the first iteration. There are only two flow modes with low dynamic  boundary  angles for which 
the closed-form solutions have been derived in the second iteration (Voinov 1977): 

fDue to circumstances beyond the Publisher's control, this paper appears in print without author corrections. 

801 



802 o.v. VOINOV 

--wett ing of  a surface covered with a thin liquid film 
--s low wetting of a dry surface under the effects of Van der Waals forces. 

Other analytical approaches (Boender et al. 1991) to solving the problem of wetting a capillary 
with low-Reynolds-number flows correspond, in the accuracy achieved, to the first iteration. 

There arises a natural desire to find a method for closing the asymptotic theory of flows in the 
vicinity of  the moving contact line at the second iteration with respect to the capillary constant; 
the result will be a reliable basis in large characteristic distance, h0, between the free boundary and 
the solid surface. In this domain the flow of a viscous incompressible liquid subjected to body forces 
is described by the following equations: 

du 
p- -~  = - V P  + p g  + pAu, div u =0 .  [1] 

At the solid surface (assumed smooth) we impose a normal conditionu = Us(Us is the speed of the 
solid). Over the liquid-gas interface, S~2, the normal velocity component of the liquid (un) is equal 
to the normal velocity component co of  the surface point; no tangential stress P~ exists here; and 
a normal stress Pn is described by the Laplacian relation in terms of the mean curvature of the 
interface 

P, = - P0 + o + [2] 

where R~ and R2 are the principle curvature radii, P0 is the gas pressure and o is the surface tension. 
In the analytical theory for the dynamic boundary angle, the boundary condition [2] is satisfied 

in the course of iterations. These utilize the fact that the contribution of viscous stresses to [2] is 
relatively small. 

The asymptotic theory of wetting dynamics is based on two perturbations: 

ICal ~ Iv h0 = - -  ,~ 1, In -~ o ~ < 1 [31 

where h0 and h m a r e  the maximum and minimum characteristic distances, respectively, from the 
free boundary to the solid. The macroscopic description of liquid flow is limited by a minimum 
d i s t a n c e ,  h m of the free boundary from the solid; this value is conventionally on the order of a few 
molecular sizes a. In going to very low dynamic angles the minimum length may turn out to be 
very large h m >~ a, is the motion equations do not explicitly take into account of Van der Waals 
forces (Voinov 1977). 

2. E N E R G Y  E Q U A T I O N  FOR THE V I C I N I T Y  OF THE MOVING C O N T A C T  LINE 

Let the surface, 812 , of contact between a liquid (the index "1") and a gas (the index "2") move 
along a fiat surface of a solid body at a constat velocity, v. 

Within this two-dimensional problem we outline a small cylindrical volume V0 that includes the 
wetting line and a fixed set of particles of the three continua (figure 1). At a time, t, we can, without 
loss of generality, assume that the surface, So, of this volume is normal to the boundary, St2, along 
the intersection line. The line, L~, along which So intercepts the first medium, is allowed to be 
modeled with a circle are at the present time t. The entirety of the flat section of the control surface 
So can be modeled with a circumference if the wetting line is within it. When the dynamic boundary 
angle is very small, the wetting line may turn out to be beyond such a circumference. In this case 
the control surface So must obviously be prolonged in the motion direction (i.e. along the x~ axis). 
the x3 of the Cartesian system {x~,x2,x3} runs along the wetting line, the value x2 < 0  
corresponding to the solid. 

The distance h from the solid surface to the point of intersection of the free boundary S~2 with 
the contour L~ of the surface So must be a macroscopic parameter large enough to enable the 
continuum mechanics approach to be employed. 

We should take into account the energy preservation law: in the case of slow motion of 
substances (with very low kinetic energy), both the external work per unit time, W~, and the 
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variation rate of  free energy, F, correspond to the total dissipation of  energy, Ez, per unit time 
within the control surface So: 

dF  
- -  - -  + W z  = g z .  [4] 

dt 

The quantities involved refer to a unit length of  the wetting line. It is usual in hydrodynamics to 
assume that the heat power due to viscosity is rather low, so the process may be considered 
isothermal. 

The variation rate of  free energy F is governed by a rate of  variation of  a total free surface energy 
on the interface within So: 

dF dl j2 
d t  = ~ ~ + ( ~  - ~2)v [5] 

when ~r~ and ~r z are the surface densities of  free energy on the boundaries between the solid and 
the first and second phases, respectively; a is the same as for the interface SI2 of  the two phases. 
The speed of variation of  the length ll2 of  the contour of  the surfaces SI2 within So may be found 
with due account for stability of  the shape of  the surface S~2: 

dlt2 
d~t- = u, + v cos ~. [6] 

Here ~ is the angle of  the slope of  the tangent to S12 at the point x2 = h of  intersection with So; 
u2 is the tangential speed component  at that point. The external work within So is that of  the surface 
forces 

Wz = ~u~ + W, 

f pijnjuidl I (P;jnj + Poni)uidl, W= [7] 
dl- I U L  2 J L  1 

where curves L~ and L2 are on S0(figure 1); P;j is a stress tensor; nj is a normal vector; u; is a velocity 
in the co-ordinate system of  the immovable solid; the repeating indices i,j = 1, 2 are summation 
indices. 

From [4]-[7] we obtain the main energy equation (Voinov 1976) for the vicinity of  the interface 
of  three phases 

-- av cos ~ + (a2 -- al )v + W = Ez [8] 

where W is the work of distributed surface forces per unit time [7]; Ez is the total dissipated energy 
per unit time within the surface So. 

~ ~ 1  V b 
2 

L 1 

F i g u r e  1. 
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Let S~ be a flat section of a liquid volume inside So, this domain being outlined by the arc L~ 
that is related to h. The dissipated energy Ez may be represented in a similar way to that in Voinov 
(1976): as a sum of the viscous dissipation E in the liquid volume and dissipation Em on the wetting 
line (inside the domain Sin, which coincides with the domain S~ at h = h m )  , 

Ez= E-]- Em, Em=G]uI= Em-3ffGIu[. [9] 

Here, Em is the viscous dissipation in the domain Sin. Note that the coefficient G >/0 can depend 
on the velocity v. The domain SL, with the domain Sm eliminated, is rather far from the wetting 
line, therefore the viscous dissipation within S~/S~ is estimated on the basis of  an invariant of  the 
strain rate tensor ~j 

E = 2t~ t "  cijdS [10] 
I ' Sm 

where # is the dynamic viscosity. 

2.1. Boundary condition in a small-size domain 

Assuming that the wetting angle determined from [8] and [9], without accounting for viscous 
dissipation (£7 m = 0 and W = 0), is not zero, 

cos ~m = (a2 -- a, -- G sin v)/a < 1. [11] 

If  (~ = 0, then the angle Cm is equal to the static boundary angle as. 
Let us assume that the wetting speed V is slow enough that the angle ¢ varies insignificantly with 

the distance from the solid surface; with this, liquid flow is close to flow in a corner. The above 
assumptions become valid if the capillary constant satisfies the criterion below: 

3lCal ~cr 3. [12] 

The viscous energy dissipation E + Em in the liquid takes place mainly in a flow with macroscopic 
characteristic lengths and vanishes at scales as small as the size of  a molecule, a. Therefore, energy 
dissipation may be estimated within the hydrodynamic theory by regularizing the dissipation in a 
small domain, with a length 

h, = ka [13] 

written using a constant k = 2 - 3. 
When determining the velocity field u from the Stokes equations, we impose the usual conditions 

(see section 1). On the interface S~2: 

dcosc7 d c o s a  h 
P n + P ° = - a  dh dh 70, ~ m - - - ~ .  [14] 

The radial density of  dissipation of energy, E (introduced in [10]), for a corner flow is described 
by 

dE 2 
Ez - dz - 2# V-z Q sin ~ [15] 

sin ~ [16] 
Q (a) = ~ - sin ~ cos c~" 

We now address the difference between the total viscous dissipation E + k7 m and the result of  the 
estimation by the hydrodynamics relations [15] and [I 6] for z > z~ where z, is a regularization radius 
(h, = z, sin ~) 

E +/~m - f f  Ez dz = 0(1)zEz = 0(l)/~v2Q sin ~. [17] 

The coefficient 0(1) in [17] accounts for an error of  calculation employing the viscous dissipation 
equation for the microscopic scale when Ca ~ 0. 
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To calculate the work of  the surface forces, W (see [7]), we use the expression of  the jump in 
normal stresses over the boundary of phases 1 and 2 (Voinov 1976) 

sin 
P n + P 0 = 2 # v Q  h [18] 

This equation is valid when condition [14] is satisfied. 
After transformations, from [7], [16] and [18] we obtain 

WA = - 21~v2Q sin ~. [19] 

From the energy equation [8] and the formulae [15], [17] and [19] for small capillarity numbers 
(Ca---, 0) and macroscopic distances h, we can derive 

c~-  ~m = 2 Ca Q ( o ~ m ) [ l n ~ + O ( 1 ) ] , h = z  sin~. [20] 

The latter relation can be compared to the asymptotic representation for the angle ~ (Voinov 1976; 
Pismen & Nir 1982) 

f0 ' dfl _ 2 C a i n h + c o n s t .  [21] Q(/~) - 

Linearizing the relation [21] at ~ ~ am leads to 

h 
a = am + 2 Ca Q (~m) In - - .  [22] 

hm 
From [20] and [22], the boundary condition for [21] is derived in the following form: 

= am for h = hm = h, exp(0(1)). [23] 

Here the difference between hm and h, does not exceed the error in the determination of h, from 
[13]. Therefore, if the distance from the solid surface is large (In h/hm ~ ~ ) ,  the constant for [21] 
under the boundary condition [21] should be evaluated assuming hm =h ,  in the principle 
approximation with respect to the large parameter In h/hr,. A condition such as [23] is suitable in 
the first approximation with respect to Ca ,~ 1 (Voinov 1976, 1977). 

It is important to note that condition [23] has been derived without continuing the macroscopic 
theory equations to the microscopic length range-- though [23] incorporates the small parameter 
hm. 

The derivation of  [23] is limited to condition [12] of  the slow variation of the angle ~ with the 
distance k. The angle ~ varies rapidly with h over a small distance range if 3 Ca ~ ~3m; but this does 
not invalidate the above estimates of the viscous energy dissipation, and [23] is effective as a certain 
approximation. 

In the case of  a statistically complete wetting, when 0~ m = 0, we should the relation a2 - cr~ ~> a 
in [8]. Note that, in these circumstances, the difference in free energies, a2 - a~ - a, insignificantly 
influences the viscous flow in the volume since the minimum value of the microscopic angle in [23] 
is o" m. Therefore the energy difference above should be equated to the coefficient G (in [9]) of  the 
energy dissipation over the wetting line. 

The limiting case of  extremely low angles (~ ~ 1) introduces its own features, since Van der Waals 
forces can show themselves in macroscopic phenomena. It is important that condition [23] holds, 
except for the fact that the characteristic length hm can significantly exceed the molecular size due 
to Van der Waals forces (Voinov 1977). 

3. B O U N D A R Y  C O N D I T I O N S  FOR N A V I E R - S T O K E S  E Q U A T I O N S  OVER A 
MOVING T H R E E - P H A S E  C O N T A C T  LINE 

3.1. Internal asymptotic solution in the second iteration 

Consider a flow in a domain where the free boundary is at a short distance (h ,~ h0) from the 
solid, but this distance is large in comparison with the minimum characteristic length (k ~> km). 
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The asymptotic solution to the creeping flow problem with a free boundary in the internal region 
was established utilizing the assumption of slow variation of the boundary slope angle a as a 
function of the distance h (Voinov 1976) 

- 4 1 .  a 

To satisfy this strong inequality, we not only require a small capillary number, but we also need 
to ensure that In h / h  m ~ 1. This is possible due to [3]. 

The asymptotics in the second approximation with respect to Ca for arbitrary a angles may be 
written as in Voinov (1978): 

1 f0' da Q ~  + Ca In sin a = Ca In h + const. [24] 

Here the constant does not depend on h and Q is defined in [16]. The asymptotic solution [24] was 
obtained taking into account the fact that the interface differs from a straight line; this is utilized 
when calculating shear stresses at each point of  the free boundary on the basis of  the corresponding 
boundary value problem for Stokes equations. 

I f  the a angles are low, the relation [24] is transformed by iterations into the boundary slope angle 
equation derived in Voinov (1977) from the thin layer motion equation: 

a 3 = g  Ca(S - ~ln tSI),  

S = l n h ~ +  C I S I  > 1, [25] 

where C does not depend on h. The constants present in [24] and [25] can be determined under 
the condition that, as the distance h ~ hm becomes less, the angle a must be matched with its value 
from the energy equation [8]. 

From the first iteration [21] the dissipated energy amount  E is a diverging function for large 
values of  k ---+ c~, E--+ oc. This divergence becomes the basis for closing the theory in the first 
iteration; such considerations should be taken into account when closing the theory in higher 
iterations. The divergence provides a positive consequence: variation of the dissipated energy 
amount  within the short length hm is comparatively small. Therefore the am estimates of  the angle 
a for h ~ hm, which are obtained from [8] by neglecting both W and the viscous energy dissipation 
rate within the characteristic length h m ( h  ~ hm), are valid: 

0 -  2 - -  O- 1 
a ( h m )  ,-~ a m = as, COS a -- - -  for a2 - ~rl < a 

O" 

a m = 0  for a2 - - a l>~a .  [26] 

The relation [26] offers a lower estimate for the case v > 0 and an upper estimate if v < 0. In the 
first approximation,  with respect to the perturbation Ca, we have a(hm) = am. If  the additional 
dissipation over the wetting line is essential [as in the case in Blake & Haynes (1969)], then the 
characteristic value of a(hm) can notably differ from the value of am in [26]. 

The theory in the second approximation is closed by the following asymptotic formula for the 
free boundary slope angle a while allowing for the limit h / h m - - ~  o¢: 

1 ( "  da sin a h 
J~m Q ~  + Ca In -- Ca In - -  s i n a ,  hm 

a , = a m  for a m / > ( g C a )  1'3, a , = ( g C a )  1/3 for am~<(gCa)  1'3. [27] 

Note that the characteristic length hm = K a  where a is the liquid molecule dimension and the 
constant K is determined by identifying the theory on the basis of the experiments. The asymptotic 
solution [27] depends on a single constant to be evaluated from parameters am and h m. These new 
parameters,  in opposition to the prior constant, are physically meaningful and ensure matching 
with the thermodynamics. 
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When writing [27], use was made of the fact that, in the first iteration with am = 0, we have 
s ~ Ca ~/3 which is valid even for large values of  s = 150 ° (Voinov 1976, 1978). Note that other 
definitions of  s ,  in [27] are possible if the order of  a ,  in them corresponds to [27]. A value of hm 
in this case will differ by a multiplier on the order of  unity. In the first approximation (Voinov 
1976) it was presumed that K = 2 - 3 .  Experiments confirmed that, as regards the orders of  
magnitude, we have K = 1, if the dynamic wetting angle is not too low (Voinov 1976, 1978). 

When the angles are low (s < 1), the formula [27] can be transformed in a relation corresponding 
to [25]. Then, the constant C in [25] is determined by 

C = 2  for 2~<1, C = 2 + ½ 1 n 2  for 2> /1  

2 = s 3m/g Ca. [28] 

If  the flow velocity is very slow (and the angle s ,~ I) and the van der Waals forces are of  
importance, then K >> 1. For  complete wetting, we have, after Voinov (1977), 

h~ = (3 Ca)-t/3(A '/2zca) 1/2, 

and the coefficient of  this equation satisfactorily corresponds to the second approximation; see 
Voinov (1988); the constant A '  is equal to the difference in the Hamaker  constants for molecular 
interaction of a unit volume of  liquid with unit volumes of a solid and the same liquid. 

3.2. Asymptotic boundary conditions for Navier-Stokes equations 

To formulate the hydrodynamic problem for domains at large distances from the wetting line, 
we replace the internal variable h/h m with the external variable h/ho. Let us outline the external 
region by the inequality 

ln(ho/h ) ~ ln(ho/hm). [29] 

Let L 0 be the solid surface line over which the external variable h/ho = O. Lo is a contact line in 
"external description." The normal speed of the point L0 is symbolized by v. The value of  v 
generally varies along the line L0.The external contact line L0 is determined in the external domain 
at h/ho---* O, but h >> h m. the wetting line L0 can differ from the real line L ,  when the dynamic 
s0 angles are very small (s0 ~ 0) and the influence of Van der Waals forces is considerable. The 
difference between lines L0 and L ,  in this case is related to the fact that the line L0 is preceded 
by the motion of an anomalous thin tim (h < hm) under Van der Waals forces. The stationary 
theory of motion of such rims has been considered in Huh & Scriven (1971), Voinov (1977) and 
Hervet & DeGennes (1984). 

To impose restrictions on the wetting line L0, we consider a plane section SN in the liquid volume, 
this section being normal to L0 at a point x0. In SN, for a point x~ of the free boundary L~2 we 
may point out a circular arc LI passing through this point, the arc being normal to L22 at Xe and 
normal to the solid surface at the intersection point (figure 1). We can formulate the problem on 
creeping flow beyond the small size domain near L0, this domain being outlined by the arc L~ that 
is related to xe. Boundary conditions for the line in the external domain can be written taking into 
account both the internal limit h/ho---, 0 of  the external variable h/ho and the necessity to match 
the "external" boundary angle with [27] in respect of  the parameter  In h/ho: 

for xe-~Xo s - - , s o ( C a ,  h o ) - 2 C a Q ( s o ) l n ~ ,  

(U-Us)lLj---~v(°); x~eSi2, xo~Lo. [30] 

Here the function s0(Ca, h0) is specified by [27], u s is the speed of  the solid at x = x 0, the velocity 
V (°~ corresponds to a two-dimensional flow in a corner s that is governed by the stream function 

~,(0) = vQ(cos s sin 0 - O cos(~ - O))z, 

Q , _  s v~°)=z ' v ( o ° ) = - - -  [31] h n S COS S ; B0 ' C~Z 

The asymptotic boundary conditions [30] for Navier-Stokes equations notably simplify the 
derivation of  the hydrodynamics problems with free boundary- -due  to the fact that a domain with 

IJMF 21 ; ~ G  
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a short characteristic length for the distances h is eliminated (from the analysis). We are allowed 
to search for a small correction, with respect to Ca, to the free boundary shape in the external 
solution. 

3.3. Scheme of external solution for low Reynolds numbers 

If  the characteristic speed v of  the wetting line L0 is simultaneously a characteristic speed of the 
flow in the external domain (with a large characteristic length) and Reynolds numbers are low, then 
the solution procedure can be simplified on the basis of the successive approximation method. 
Within the first approximation the Stokes equation is transformed into hydrostatics equations, and 
the free boundary S~2 is described by 

~r + = + P0 const + p U  [32] 

where U is the potential of  the external body-forces and R~ and R2 are the first and second radii 
of  curvature of  S~2. Within the second approximation,  we 

solve the problem for Stokes equations with the interface line known and the normal velocity 
profile specified; 
derive a jump in normal stresses with due account for viscous flow. The surface S~ ) is 
determined from the equation 

1 1 p~21 + Po p~l)  + Po 
- - - -  + O(Ca). [33] 

R l R 2 a a 

The left-hand side of [33] is written approximately (assuming that deviations of  S~2 I from S~ / are 
low) through the corresponding differential operator over the known surface S ~  for which the 
right-hand side of  [33] has been found. In each iteration, S~2 is determined using the boundary 
conditions [30]. The method is appropriate for small and moderate Bond numbers Bo = pgl2~y 
where / is the characteristic length of the flow. 

A similar approach was used in Voinov (1976), including estimation of the influence of gravity 
on the spreading of drops. 

When the effects of  body forces are insignificant, the surface S~2 is a segment of  a sphere with 
a radius R0. In the second approximation,  with respect to Ca, the perturbation of the radius, R, 
is established from the problem 

P~) + P0 2 
( / ~ ' s i n 0 ) ' + 2 / ~ s i n 0 -  - F ( 0 ) ,  R - -  R - -  R o 

~Y R 0 

where 0 is the vectorial angle; 0 = 0 corresponds to the symmetry axis. A solution to this problem 
can be written up to a constant: 

;d0f; 
R = cos 0 sin 0 cos 2 0 F(Ol ) cos 0~ d0~. [34] 

4. A S Y M P T O T I C  S O L U T I O N  OF T H E  D Y N A M I C  P R O B L E M  OF W E T T I N G  
A C A P I L L A R Y  IN T H E  CASE OF LOW A N G L E S  

4.1. Perturbation of the meniscus. External solution 

If  a free boundary slope is shallow, the flow can be described within the thin layer assumption; 
so, for the steady-state flow, we have 

d3h 3 Ca 
d x  3 - h2 [35] 

At a distance from the external line of  wetting (x  = 0) the layer shape is close to a meniscus, i.e. 
constant curvature surface with a radius R 

h - h m = O ( l  ), x / R [ a l [ - - ~ - o c  

h . l=aox2+a lx ,  a o - 1 / 2 R ,  a l < 0  [36] 
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In going to the wetting line the layer thickness h becomes less: 

h0 
h - - ,O ,  x - - , - 0 ;  In ¢ln~m. [371 
h0 

The lower limit for h in [37] corresponds to the definition of the external domain. 
The problem [35]-[37] can be solved in the vicinity of  the meniscus 

h = h m + h(2), Ih(2)l '~ hm. [38] 

For h(2 ) w e  have the problem 

h'z" = 3 Ca/h~l) h2 = O, x = O 

h~2)---*0, h~)--~0 for x - - - ~ - ~ .  [39] 

After three integrations in [39], we obtain 

3 Ca ( ~ 2 2 ~  ~ - ) h° ) -  a~fl In +fl x, f l = R l a l l .  [40] 

In accordance with [36], [38] and [40] the following relation is valid for a region far from the 
wetting line: 

x 3 C a R  
Rlal~ - -~ - ° ° '  h - h ° ) - - ~ a 2 -  lall [41] 

In the close vicinity of the wetting line, we have 

x--- , -O,  h = a , z + ~ 2 x  In - 1  + . . . .  

3 C a ( l n  2 3  _ 1 ) + . . .  [42] 
h '=a l  + al2 \ Ixl 

According to [42], the boundary slope angle for h/ho---, 0 is described by 

) c ~ = - - h ' = e o  C~o2 In 2 + . . . .  

~o = - aj  [ 4 3 ]  

4.2. Matching the disturbed meniscus with the asymptotics of  the dynamic boundary angle (with the 
internal solution) 

The angle ~0 is established by using the common relations [30] for matching. From [25] and [43] 
it follows that 

0% = ct (h0), h0 = 2 ct ~ R [ 4 4 ]  
e - 

where a(h) is governed by the asymptotic solution for small angles [25] and [28] and R is the 
meniscus curvature radius. The transcendental equation [44] (taking into account [25] and [28]) for 
~0 can easily be solved by iteration, since the right-hand side in [44] is almost constant with respect 
to h0 and 0~ 0. 

The form of the function ho = cct~R is known. The coefficient C = 0.5 (Voinov 1976, 1977) 
and a refined estimate c = 0 . 5 e  0 " 3 7 6 = 0 . 3 4 3  (Voinov 1988) are close to the exact value 
2 e - 2 =  0 .2706. . .  [44], because the angle ~0 only slightly depends on the coefficient c. 



810 o .v .  VOINOV 

4.3. equation for contact angle measured when liquid wets capillary 

Consider the angle between the meniscus and the solid surface % as obtained from the equation 
of the meniscus for h > h0; here, the meniscus is assumed to be insignificantly disturbed by viscous 
stresses. After [41], we can write 

X 
- -  - - +  - -  OO~ 

c~0R 
h - ao(x - x0) 2 + ~(x - x0)--~ 0 

X o  
% = ct 0 -- - -  [45] 

R 

where x0 is a minimum root of the quadratic equation 

ao x2 - ct0x0 + a2 = 0. [46] 

We should take into account the strong inequality 3 Ca < ct 3 and consider relations [41], [45] and 
[46] to derive the following principle approximation with respect to In ~(ho/hm): 

3 Ca 3 Ca 
x0 - ~2 R, :~" = ct° + ct--~- [47] 

The angle described by [45] corresponds to modelling the free boundary by a sphere which touches 
the boundary at the axis of  the capillary tube and intersects the solid surface at an angle %. Let 
/4, designate the height of  the spherical segment thus obtained. Measuring the value /4, is a 
challenging task for experimenters. It is usual to measure, instead, the distance (along the capillary 
axis) between locations at which points of  the free boundary are on the capillary axis and the 
wetting line; thereafter the angle ct b is calculated by utilizing a segment of  sphere to model the 
boundary from the capillary axis to the wetting line. In so doing, 

H =  x l h - 0 -  xlh=h~ 

H __ 1 -- sin ctb [48] 
hK COS ~b 

(hK is the capillary radius). These heights differ (due to translation) by the value x0 described in 
[46] and [47] 

H,  = H(eb) + x0. [49] 

Writing the right-hand side of  [48] in the limiting case of  low c~ angles: 

1 - -  s i n  ct ~ 2 

cos~ - 1 - - ~ + ~ - +  . . . .  

we have, from [47]-[49]: 

3 Ca'] .  

It is important  that, in contrast to [45], the small correction to e0 in [50] is on the order %xo/R 
rather than xo/R. This allows ~b to be determined with a noticeably higher accuracy than c~, is 
determined on the basis of  (i) the same value of a2 in [41] and (ii) the corresponding increment x0. 

The relation for the measured contact angle (defined by [48]) is derived by substituting [50] into 
[44] with allowance of asymptotics [25]: 

~ = e 3 + g  Ca In - c~b- ~ln  ~ ,  

h0 = ~ , ~ , , .  [51] 

The latter expression differs from [44] (and [25]) by the second term in the brackets to the right. 
I f  we go to very low angles of  ~b, the difference between ~0 and ~b vanishes. 
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5. A S Y M P T O T I C  T H E O R Y  OF W E T T I N G  OF A C A P I L L A R Y :  
A R B I T R A R Y  D Y N A M I C  B O U N D A R Y  A N G L E S  

5. I. Solution procedure for the external hydrodynamics problem 

The bounda ry  condi t ion over  SI: in the axisymmetr ic  p rob lem 

d cos ~ cos ~ P.  + P0 
- -  .-[ - -  - -  _ _  

dh hx - h cr 

can be rewritten through integrals after  resolving it with respect to cos a: 

_1 fh 'x (hK -- h) P° + Po dh. [52] cos ~ - hK h a 

I f  the capil lary cons tant  is small, the funct ion ~(h) is close to the function ~l(h) for a sphere in 
the external domain  [29] 

~(h)=~tt(h)+o:2(h), I~l ~ ,  

C O S  ~ 1  = C O S  0~ 0 l - -  . [53] 

We can assume that  a sphere touches &2 at the capil lary axis, the sphere radius R0 satisfying the 
equality 

2a 
Ro Pn[h=h x + Po" 

It  is convenient  to resort  to a non-dimensional  function G that  characterizes an increment  of  normal  
stresses 

2#v ( ~ )  
P.  = Pn IhK + ~ - -  Q (C¢0) sin c¢ 0 G , ~0 (54) 

where c¢0 = c¢, is the angle which the sphere makes  at the intersection with the solid, a fo rmula  for 
the small term cq(h) in [53] will result f rom expanding the left-hand side of  [52] into a series at 

_Q (~0) sin ~0 f hK hk -- h G 
a2(h) = - 2  Ca sin cq (h)(hx - h) Jh h dh. [55] 

Substi tut ing [55] into [53] and going to the limit h/hK--+ 0 in the external solution makes  it possible 
to write 

ct --~ c¢ 0 - 2 Ca Q(~0) In --h° [56] 
h 

ho = hK exp( - -  (~,), (~, 1 [57] 
a \h J d h 

Validity o f  the relation [56] is limited by the inequality [29]. F r o m  [56] and the c o m m o n  bounda ry  
condi t ions [30] it follows that  

~,, = ~(ho), h0 = h x e x p ( - ( ~ , )  [58] 

where co(h) is the asympto t ic  expression for [27]. 
In a two-dimensional  p rob lem we have the relation [59] that  is similar to [57]: 

f ĥ , dh 
C'~ = (1 - G)  -h- [59] 

do 
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5.2. Equation for dynamic contact angles measured in experiments 
The axial distance H between the locations where h = 0 and h = hx differs (due to ~2) f r o m / 4 ,  

for a sphere: 

f0 '~ dh hK Iq'-' % d~,. [60] H - - H , , = A H = A  t g c c ( h ) -  cOSao.)~o sinai  

We can determine the measured angle ab on the basis o f  H and [48] and write 

AH sin c¢a - 1 
- -  -- - -  (~b -- %), [c tb- -%l '~%.  [61] h K COS 2 C¢ a 

F rom [60] and [61] the measured angle is related to cq: 

COS ~o ('r,,2 ~2 d ~ l  
= J~ : . [62] ~b a .  4 1 - -  s i n  a0  0 sin CX 1 

Substi tut ion into [62] of  the expression ~2(h) from [55] provides the description of  the measured 
angle: 

~b . . . . . .  % 2caQsin~oCOS2%f',2 dal Ih~(_h']Gdht hK/] h " [63] 
1 - sin % 0 sin 2 at cos cq dh(~) 

Here the angle ~ is an angle of  slope of  the tangent to the sphere. The double integral can easily 
be t ransformed into a single one (using the integration in part). Substituting [58] into [63], we find 
the constant  C~ for determinat ion of  the angle ~b from the general asymptotic  relation: 

e ~ =  ~(h0), h0 = h K e x p ( - C i )  [64] 

sin c~0 cos2 c % 
[ f0' lnff + ( 1  f01 ~ ]  1 - ~ d ~  - f ( ~ ] ) ( l  - ~ ) ( G  - 1) [ 6 5 ]  

C , = C ' , +  t - s i n n ~ o  ( - ( ~ ' ) f ( % ) -  sin2a, coscq 

h l 1 1 - sin a 
= . + ~ l n  , c o s ~ l = c O S ~ o ( l - f f ) .  

= hKK' f(c¢) sin ~ 1 + sin 

Here, (~l is from [57] and corresponds to the angle % [58]. 
In the two-dimensional  problem (where a capillary is formed by parallel planes) the expression 

[65] should be replaced by 

- - -  - -  ~ u ¢  - ( G  - 1) d ¢  [ 6 6 ]  
CI = Ci + 1 - sin % sin ~0 s i n  c( l ~ s ~ n ~  I " 

We analyse [65] and [66] in the case of  shallow slopes; for this case section 3 provides a reference 
solution. When ~0 "~ 1, we find from the thin layer mot ion  equation [35]: 

h~ fh~ dh [67] P , = P ,  +3~v3, ' aq~ 

The latter is only valid where the distance h is short; but  its error for h ~ h~ is insignificant because 
the major  contr ibut ion to C~ is from the region h ~ h0. The relation [67], in connect ion with [55], 
corresponds to 

fh~ dh ~h~ dh 
G = ~oh ~ ~ h h2(1 + 2h/~hx),. 2. [68] 

d h  t 

Substituting [68] into [59] and [65] and deriving the asymptotics of  the integrals for ~0--' 0 allow 
us to write 

Ct = - l n ( 2 ~ )  + 2 + c~0. [69] 

This is in line with the solution [51] which has been found for the case of  shallow slopes. Note  
that  poor  informat ion about  viscous stresses for h ~ h~ does not degrade the small-value second 
term in [18]. The possibility of  taking into account  the terms on the order  of  a in C~ exists only 
for the measured angles of  7b determined from [48] (see comment  to [50]). 
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The pair [57] and [65] (or the pair [59] and [66]) make it possible, in the general case, to exactly 
calculate the term of the second approximation if we additionally solve the creeping flow problem 
with a prescribed interface S12 in the shape of a segment of a sphere (a circular cylinder) with a 
boundary angle :(0 and if we use the increments of normal stress in [54] to obtain the function 
G(h/hK, ~0). With this, the problem becomes notably simplified. First, instead of the problem with 
a free boundary we have a much more simple problem with a fixed boundary. Second, the wetting 
line stress singularity, which complicated the numerical solution of the problem, is eliminated due 
to the boundary conditions posed for the external solution. 

5.3. An approximate analytical solution for finite boundary angles 
Let us try to solve completely the problem in the second approximation. The search for simple 

approximations for calculating the coefficient CI is meaningful, in particular, because this coefficient 
very significantly affects the contact angle and a poor accuracy will satisfy us. 

Note that the normal stress increment 

APn = Pn - Pn Ih = hx 

must fulfil two conditions on the capillary axis: 

A P ° = 0  and ~ h A P " = 0  at h =hK [70] 

The second condition allows for symmetry in the problem. In addition, we are aware of the form 
of  stress increment for h ~ 0: 

Q(~l) sin :fl 
A P  n = 2pv [71] 

h 

It is seen that AP, is restrained by numerous conditions. One could reveal that a smooth function 
with numerous conditions imposed can be approximately written without solving the boundary 
value problem. This is evidenced by the experience in the boundary layer theory of fluid mechanics. 
Therefore, by analogy with Voinov (1976), we can adopt the following approximation: 

2pv _ 
APn=--~--Q(~l)sin~j 1 [72] 

According to [72], the function G is 

G Q(:t,) sin ~t, - ~  
Q(~o) sin :t 0 1 [73] 

The results of the calculation of C, (~0) in accordance with {[57], [65]} or {[59], [66]} (for circular 
and flat capillaries) and [73] are represented in figure 2. Values of C~ from the reference equation 
for low angles ~0--~ 0 [69] are given for the sake of comparison. Note that all three curves in figure 2 
are close to one another where ~0 = 30-60°; this validates the approximation [72]. As regards 
features of the picture, a plateau of the curve C~ (~o) for :t 0 ~ 90 ° should be mentioned. At ~ ~ 90 ° 
the values of  Ct are 2.4 and 2.1666 for the circular and flat capillaries, respectively. These exceed 
the previously known values of 1.83 and 1.5 (Voinov 1976), that were computed for the angle ~, 
rather than :t b which is now dealt with. Note that in typical experimentation conditions this 
difference between the angles ~0 and :q is small, only 2%, although these are defined in different 
ways. 

6. ON THE S Y M M E T R Y  OF THE A S Y M P T O T I C  R E L A T I O N  OF THE D Y N A MIC 
W E T T I N G  A N G LE 

Within the first approximation the slope angle ~ of  the tangent to the liquid-gas interface can 
be asymptotically described (according to [16] and [21]) for small capillary numbers 

fo' ( S i ~  - cos f l )  dfl = 2 Ca ln h + const [74] 
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In Boender et al. (1991), for a similar equation the left-hand side integral [which is symbolized 
by 2P(~)] is proposed to be approximated on the basis of the conventional relation from Bronstein 
& Semendyaev (1973): 

~ - - s i n a  a t an~ /2  ~ 22n(22n ' - - 1 ) ( O { )  2n+l 
P(~) - ~ t- ~ In ~/2 ,=, (~-n ~7]~.Un Bn ~ [751 

where Bn is the Bernoulli number. The equation is cumbersome and slowly converges when ~ ~ 
(as in 1/n). Moreover, it fails to show why the approximation P ~ a/g (Voinov 1976) is successful. 

Note that the simple approximation (when ~ ~ ~) in Voinov (1976, 1978) has an exact sense. 
To prove this, it is enough to subdivid the integral [74] into two integrals over intervals (0, ~/2 
and (=/2, ~) and to use the substitution /3---, ~ - f l  for the latter interval. Then transformations 
provide 

P ( ~ )  = P O z  --  ~ )  + 2 In tan ~- [76] 
2 

Equation [76], unlike [75], exactly sets apart the non-analytical feature of P(~) at ~ = n. The 
additional summand that is the difference between the values of P(~) for :t > n/2 and elsewhere, 
is extremely simple, so we can conclude a special symmetry of [74]. 

The symmetry formula [76] reduces the problem of approximation over (0, n) to that for the 
interval {0, n/2}. If ~ < n/2 (i.e. is far enough from the singular point ~ = n where P = vo) various 
approximation concepts are suitable. For example, the expression to be integrated may well be 
expanded as a series in /3 to give 

~ 3 (  ! ~ 2  1 3 4  ) 
P(~) = - -  1 + . . .  g +5 g6 

This clearly demonstrates the cause of the effectiveness of the approximation P ~ ~3/g for rather 
large values of :~, not only for ~ -+ 0. 

The symmetry enables the approximation suggested in Voinov (1976): 

~3 3 1 n ~ 3n 
P = - - ,  d < ~ r r ;  P = - ( r c - c Q 3 + ~ l n t a n ~ ,  e > - -  

g g 4 

So the special symmetry equation [76] offers the most effective approach to the approximation 
of  the dependence of the dynamic wetting angle on speed. 
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7. CONCLUSION 

The basic results can be summarized as follows. 
(1) It becomes clear that the therymodynamics approach notably simplifies the solution of the 

problem of stress singularity near a moving line of contact of three phases with due account 
of viscous flow. The energy conservation equation [8] offers an exact expression of the dynamic 
boundary angle ~ at a macroscopic distance h from the solid surface. The problem of the 
dynamic boundary angle has been transformed into the problem of energy dissipation Ez and 
the power W of external forces distributed over a surface of a small control volume. The integral 
formula [8] for the dynamic boundary angle made it possible to substantiate (without special 
assumptions) the boundary condition [23] for points a small distance from the solid. It should be 
mentioned that the derivation does not consider details of flow in microscopic lengths--unlike the 
set of previous contributions. The boundary condition for a domain with a small characteristic 
length is a consequence of analysis of macroscopic values at a notable distance from the contact 
line. 

(2) The most important result is the method for evaluating the constant of the exact internal 
asymptotics of the interface slope angle in the second approximation with respect to he small 
capillary number [27]; the method is based on matching the values to the thermodynamic equation 
over a small-size vicinity of the contact line. 

(3) We obtain common boundary conditions over the three-phase line for the external problem 
for Navier-Stokes equations that deal with the flow far enough from the wetting line. These 
boundary conditions notably simplify the solution procedure for non-linear problems in interface 
dynamics. 

(4) A rigorous method has been developed through which the dynamics of the interface of a low 
Reynolds number flow in a capillary is analysed asymptotically in the second approximation with 
respect to the capillary constant. The principle of the method applies to other problems with 
creeping flow. 

(5) A reference solution to the problem of wetting a capillary with shallow slopes has been 
obtained. 

(6) An approximate relation for deriving the second approximation valid for angles c~0 = 30-150 ° 
has been found. 

The theory corresponds to experiments with capillaries [the contributions by Zheleznyi (1972, 
1974) and Hoffman (1975)] and spreading drops because good convergence with the test results 
has already been achieved in the first approximation (Voinov 1976, 1978). To refine the slight effects 
of the microscopic processes on the dynamic boundary angle measured, more accurate experiments 
are a necessity. Non-equilibrium processes within a microscopically narrow domain near the 
wetting line (Blake & Hanes 1969) can influence the dynamic boundary angle in accordance with 
the thermodynamics equation, due to extra dissipation of energy. Where the "approximate" use 
of an equilibrium angle within the region with a minimum characteristic length provides good 
agreement between the hydrodynamic theory and the tests, the additional non-hydrodynamic 
mechanisms in the variation of the dynamic boundary are of no importance. 
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